Biomechanics of a Posterior Lumbar Motion Stabilizing Device: In Vitro Comparison to Intact and Fused Conditions.
نویسندگان
چکیده
STUDY DESIGN Nondestructive flexibility tests were performed in vitro, comparing multiple conditions of fixation in a single group of specimens. OBJECTIVE To compare the biomechanical behavior of the lumbar spine in the intact condition, after implanting a novel motion stabilizer, and after implanting a rigid fixator. SUMMARY OF BACKGROUND DATA Two specific scenarios that may benefit from dynamic lumbar stabilization are single-level moderate instability, where the stabilizing tissues are relatively incompetent, and juxta-level to fusion, where the last instrumented level requires intermediate stiffness ("topping off") to prevent transfer of high stresses from the stiffer fusion construct to the intact adjacent levels. Both scenarios were evaluated in vitro. METHODS Seven human cadaveric L2-S1 segments were tested (1) intact, (2) after moderate destabilization, (3) after 2-level hybrid posterior fixation, consisting of bilateral dynamic pedicle screws at L4 interconnected with rigid rods to standard pedicle screws at L5 and S1, (4) after 2-level rigid fixation, (5) after 1-level (L4-L5) dynamic fixation, and (6) after 1-level rigid fixation. In each condition, angular range of motion (ROM) and sagittal instantaneous axis of rotation (IAR) were assessed. RESULTS In 1-level constructs, dynamic hardware allowed 104% of intact ROM, whereas rigid hardware allowed 49% of intact ROM. Relative to the intact, the IAR was shifted significantly farther posterior by rigid 1-level instrumentation than by dynamic 1-level instrumentation. In 2-level constructs, the dynamic level allowed significantly greater ROM than the rigid level in all directions but allowed significantly less ROM than the intact level in all directions except axial rotation. CONCLUSION Dynamic instrumentation shifted the IAR less than rigid instrumentation, providing more favorable kinematics. This dynamic stabilizer provided 1-level ROM that was close to intact ROM during all loading modes in vitro. In the topping-off construct, the dynamic segment allowed intermediate ROM to give balanced transitional flexibility. LEVEL OF EVIDENCE N/A.
منابع مشابه
Biomechanics of posterior instrumentation in L1-L3 lateral interbody fusion: Pedicle screw rod construct vs. transfacet pedicle screws.
BACKGROUND The use of pedicle screws is the gold standard for supplemental posterior fixation in lateral interbody fusion. Information about the performance of transfacet pedicle screws compared to standard pedicle screws and rods in the upper lumbar spine with or without a lateral interbody fusion device in place is limited. METHODS Fifteen fresh frozen human cadaveric lumbar spine segments ...
متن کاملPostero-Lateral Disc Prosthesis Combined With a Unilateral Facet Replacement Device Maintains Quantity and Quality of Motion at a Single Lumbar Level
BACKGROUND Mechanically replacing one or more pain generating articulations in the functional spinal unit (FSU) may be a motion preservation alternative to arthrodesis at the affected level. Baseline biomechanical data elucidating the quantity and quality of motion in such arthroplasty constructs is non-existent. PURPOSE The purpose of the study was to quantify the motion-preserving effect of...
متن کاملSpinal Decompression and Stabilization: Expandable PLIF Cages over TLIF Cages for Spinal Fusion
Study design: An in vitro biomechanical flexibility and fatigue test comparing two different lumbar interbody fusion cages using mono segmental lumbar spine specimens. Objective: To investigate and compare the stabilizing effect of a transforaminal lumbar interbody fusion (TLIF) cage against an expandable posterior lumbar interbody fusion (PLIF) cage. Method: Six intact human lumbar spine segme...
متن کاملEvaluation of Two Novel Integrated Stand-Alone Spacer Designs Compared with Anterior and Anterior-Posterior Single-Level Lumbar Fusion Techniques: An In Vitro Biomechanical Investigation
Study Design In vitro biomechanical investigation. Purpose To compare the biomechanics of integrated three-screw and four-screw anterior interbody spacer devices and traditional techniques for treatment of degenerative disc disease. Overview of Literature Biomechanical literature describes investigations of operative techniques and integrated devices with four dual-stacked, diverging interb...
متن کاملBiomechanical Evaluation of Pedicle Screw-Based Dynamic Stabilization Devices for the Lumbar Spine: A Systematic Review
STUDY DESIGN This study is a systematic review of published biomechanical studies involving pedicle screw-based posterior dynamic stabilization devices (PDS) with a special focus on kinematics and load transmission through the functional spine unit (FSU). METHODS A literature search was performed via the PubMed online database from 1990 to 2008 using the following key words: "biomechanics," "...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Spine
دوره 41 2 شماره
صفحات -
تاریخ انتشار 2016